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 Abstract – Results of numerical investigations of 

self-oscillatory cavity flows are represented. Two-dimensional 

Reynolds-averaged Navier-Stocks equations coupled with the 

algebraic Karman turbulence model are solved by an implicit 

third order Runge-Kutta scheme. The turbulent viscosity is 

defined by the Prandtl formulae, which deals with the 

turbulent length scale calculated on the base of the 

generalized Karman formulae. Steady flow, resulted from 

interaction of two supersonic parallel flows are modeled to 

check convergence to a steady state solution. Calculations of 

the low Mach number flow near plain surface are carried out 

to prove existence of logarithmic part in the boundary layer 

profile. A turbulent open cavity flow at Mach 1.5 and 2.5 is 

modeled to study the flow physics. Results of calculations are 

compared with results of other computations.  

 

Keywords – High Resolution Methods, Reynolds-Averaged- 

Navier-Stocks Equations, Self-Oscillatory Flows. 

 

NOMENCLATURES 
1. Pressure P ,  

2. Density Ȑ,  

3. Mach number M,  

4. Viscosity µ,  

5. Vorticity w,  

6. Length scale z,  

7. Specific heat ratio γ,  

8. Distance to solid surface d w ,  

9. Physical space variables x, y,  

10. Transformed variables x, η.  

  

I. INTRODUCTION 
  

Progress in CFD studies of self-oscillatory compressible 

flows makes natural and possible next step of 

investigations – CFD search for new unsteady flows. This 

search is connected with numerous calculations of diverse 

flows. So, economical and universal turbulence model is 

required. Classical algebraic models [1],[2] are economical 

and relatively simple, but are not universal. Recent paper is 

devoted to development and applications of the algebraic 

model of turbulence, constructed in [3] on the base of the 

generalized Karman formulae for the turbulent length 

scale. This generalization is performed to extend 

applicability of the Karman formulae to regions beyond 

boundary layers. Above of universality, additional 

distinguishing feature of the Karman model is usage of 

averaging. It should be memorized that highest solution 

derivatives in every space variable and time should be 

considered to define type of equations. If turbulent 

viscosity depends on derivatives of solution, the type of 

RANS may differ from the parabolic type of NS equations. 

To avoid this effect the averaging is used in the Karman 

model.  

Self-oscillatory cavity flows may contain complicated 

structures of shear layers and shock waves, generation of 

cavity flow oscillations is resulted from interactions of 

numerous flow elements. So CFD study of these flows may 

be used to check the turbulence model. Classification of 

unsteady cavity flows may be performed according to 

geometry (open cavity flows and closed cavity flows) and 

according to physics of flows. The feedback mechanism is 

divided into fluid-dynamic and fluid resonant in [4]. 

Incompressible flows such as low Mach number air cavity 

flows are classified as fluid-dynamic oscillatory. The 

self-sustaining cavity oscillations in compressible flows at 

high Mach numbers are classified as fluid-resonant 

oscillations. Other reasons for classification are suggested 

in [3],[5]-[6]. Generation of self-oscillations are supposed 

to be resulted from resonance interactions of “active” flow 

elements, namely, elements, increasing disturbances. 

Contact discontinuities and intersection points (lines in 3D 

case) of shock waves with shock waves or shock waves 

with contact discontinuities compose sets of flow active 

elements. According to this self-oscillation mechanism, 

classification of unsteady flows depends on sets of flows 

“active” elements. Subsonic flows may contain only 

elements of the first type, namely, contact discontinuities. 

So, subsonic cavity flows produce self-oscillations as a 

result of interactions of two or more contact discontinuities. 

Supersonic cavity flows contain also elements of the 

second type, namely, intersection points, mentioned above, 

which may be involved to interactions, producing flow 

oscillations. 

Investigations of unsteady cavity flows are concerned for 

various aspects. For example, the mode switching for the 

cavity flows is studied in [7]-[9]. Active and passive flow 

control techniques are considered in [10]-[13]. The noise 

generation physics of the unsteady cavity flow is 

investigated in [14]-[17]. 
 

II. THE KARMAN MODEL OF TURBULENCE 
 

The initial Karman model [3] is modified significantly 

here. Namely, two control parameters are used instead of 

one parameter, generalized Karman formula is changed, 

averaging is used twice and new weight function of 

averaging is applied. The Karman algebraic model of 

turbulence deals with the Prandtl formulae µ tur = ρ|w|z2, 

where w is vorticity, ρ is density, z=kl, l is the turbulent 

length scale, k=0.4 is the Karman coefficient. This 

formulae is applied in classical Cebeci-Smith and 

Baldween-Lomax models [1]-[2], where the length scale is 
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defined as a distance to a solid wall. Another definition of 

the length scale is used here. The Karman formulae  

z=kµu/µy /(µ2
u/µy

2
)  

is applied in the theory of a turbulent boundary layer. The 

idea of recent model is to use generalization of this 

formulae:  

lº|w(x,y)|/|Ðw(x,y)|, (1) 

where Ðw(x,y) – vector ( µw/ µx, µw/ µy), 

|Ðw(x,y)|= [(µw/µx)
2

+(µw/µy)
2

]
2/1

, w - vorticity. 

Of course, the formulae (1) gives bad results in regions 

with “small” values of |Ðw(x,y)| and so should be 

modified. Next procedure of turbulent viscosity 

calculations is used here:  

l=|w|/[
2|| wÐ +δ(|Ðu|

2
+ |Ðv|

2
)/Det]

2/1
, (2) 

 

z=min{l/[(1+l
4

/λ
4

)(1+l
2

(l
2

-0.7c
2

)
2

/c
6

)]
4/1

,d w }, (3) 

 

µ tur =
2)(|| kzwr , (4) 

λ, c - control parameters, u,v – velocity components, d w  – 

distance to a solid surface, δ =0.0001- the coefficient, 

providing regularity of written above formulas in the case 

grad w º 0, 

Det=µx/µx³µy/µη-µx/µη³µy/µx, x, η – 

transformed variables. The geometrical parameter c should 

be equal approximately to a maximal width of shear layers 

or boundary layers, parameter λ < c allows to vary “level” 

of turbulence. To make the formulae (3) more clear the 

main expression of this formulae should be rewritten as a 

multiplication of two factors,  

l/[(1+l
4

/λ
4

)]
4/1

 and 1/[(1+l
2

(l
2

-0.7c
2

)
2

/c
6

)]
4/1

.  

First factor approximates the Karman formulae in 

regions with small values of the relation l/λ. This factor 

increases asymptotically till the value l=λ as l increases. 

The second factor is approximately equal to 1 in the 

interval 0< l < c, then this factor quickly decreases and 

tends to the zero limit as l increases. The turbulent length 

scale decreasing is intended to provide low level of the 

turbulent viscosity inside of circulation zones. Underlined 

expressions are averaged expressions in formulas (2)-(5), 

the averaging procedure consists of two steps 

 f 1 =ñ
D

D-

xm

xm
f (x+ς,y)W(mDx,ς)dς, (5) 

 f=ñ
D

D-

ym

ym
f 1 (x,y+ς)W(mDy, ς)dς, (6) 

W( ε ,ς)= (1.2- ς
2

/ε
2

) /ñ-
e

e
(1.2- ς

2
/ε

2
)dς. 

It should be noted, RANS have parabolic type, if 

turbulent viscosity does not depend on first or higher 

derivatives of solution functions. To eliminate dependence 

of turbulent viscosity (1)-(4) on first and second 

derivatives, the averaging procedure (5)-(6) is used. This 

procedure provides “smoothing” of turbulent viscosity, 

consequently, improves convergence to steady state 

solutions and prevents false unsteadiness. The most 

dangerous expression, containing second derivatives - 
2| |wÐ - is averaged really twice, namely, averaging is 

used in formulas (2) and (4), while only final averaging was 

used in the initial model [3]. It allows to decrease averaging 

region and to use the integer parameter m=4 (see form. 

(5)-(6)) instead of m=7 [3] and, consequently, to improve 

resolution of the recent approach. Averaging is divided into 

two steps (5)-(6) to diminish the computational cost of the 

procedure.  

The purpose of usage of this model is to find flows, 

which keep unsteady regimes while the control parameter λ 

is increasing, but remains much less then geometrical 

lengths of problems. This turbulence model may be 

considered as a tool to simulate approximately the turbulent 

dissipation influence on solutions of NS equations.  

 

III. TEST PROBLEMS 
 

The supersonic flow resulted from interaction of two 

parallel uniform streams (see fig. 1) is calculated on the 

base of Euler equations and RANS equations coupled with 

the written above turbulence model. The flow is defined by 

upper stream parameters p
u

=1, ρ
u

=1, M
u

=2.4 and down 

stream parameters p
d

=0.25, ρ
d

=0.5, M
d

=4. The 

180³135 grid is used. Fig. 1 shows the density distribution 

in the case µ tur =0. 

 
Fig. 1. Interaction of two ideal parallel streams, the density 

distribution 

 

Fig. 2a, 2b represent results of flow calculations for the 

turbulent case. Karman model parameters c=0.075L (L - 

the left boundary size), λ=.05L are used. Turbulent 

Reynolds number Re=L u
d
ρ

d
/max ik (µ tur ) of 88 is 
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resulted. Calculations are carried out for CFL number 1.38. 

Fig. 2a shows convergence histories, 1- the ideal case 

µ tur =0, 2 – the turbulent case, 3 – turbulent viscosity is 

calculated without averaging. 

(a) (b)   

Fig. 2. Supersonic streams interaction, a - convergence 

histories, b – the turbulent density distribution. 

 

So, convergence histories show, that averaging is 

important part of the recent turbulent model since 

averaging provides convergence to a steady state solution. 

Fig 2b shows the turbulent flow density distribution. If to 

compare figs. 1 and 2b, difference is seen only in the zone 

of contact discontinuity. Fig. 2a demonstrates quick 

convergence to a steady state solution of the method [18] 

for the CFL number 1.38. But since large CFL numbers 

may lead to increasing of computation errors in the case of 

unsteady flows, recent investigations, written below, are 

carried out for CFL numbers within limits 0.5 – 1.  

The low Mach number 2D flow near plane surface is 

calculated with usage of the Karman turbulence model. Fig. 

3 shows the 45 ³ 18 mesh (the compression 

Dx
max

/Dx
min ºDy

max
/Dy

min º10). The domain 

length d is equal to 1.75h.  

 
Fig. 3. The computational domain, the 45³18 mesh. 

 

Boundary conditions for computations are no-slip 

adiabatic wall on the plane solid surface, extrapolations 

on the outflow boundary, prescribed variables on the 

inflow edge. Namely, dimensionless inflow pressure and 

density are 1, the vertical velocity v is 0, the horizontal 

velocity is u= M ¤ gsin (sπ/2) if s=y/q≤1, u= 

M¤ g
 

if s=y/q>1, g=1.4 – the specific heat ratio, 

q - the initial boundary layer thickness, q=0.75h. 

Calculations are carried out for flow conditions M¤=0.3, 

µ¤=1.3e-6. Mentioned above grid compression does not 

provide resolution of the laminar sublayer for this value 

of the physical viscosity. So, influence of turbulent 

viscosity on flow fields is dominant. Karman model 

parameters are chosen as c=0.9h, λ=0.6h. The 451³181 

mesh is used. The turbulent Reynolds number Re = 

ρ¤u¤q/ /max ik (µ tur ) =101 is resulted.  

Fig. 4 shows inflow and outflow velocity profiles. Since 

low value of inflow Mach numbers M¤=0.3 and adiabatic 

wall condition result small compressibility of the flow, the 

logarithmic part of velocity profile near the wall should be 

formed. Really, the nearly rectilinear part of the outflow 

logarithmic profile is seen in fig. 4.  

 
Fig. 4. Velocity profiles near the plain surface. 

 

IV. THE COMPUTATIONAL CAVITY FLOW 

MODEL 
  

The implicit conservative Runge-Kutta scheme [18] is 

employed here with some modifications. The initial 

method [18] is implemented in a computer code for 

sufficiently smooth curvilinear coordinate transformations 

x =x(a,b), y =y(a,b), mapping the unit square in the plane 

of variables a,b to a curvilinear quadrangle in the plane of 

physical variables x, y. Within this approach, it is difficult 

to obtain satisfactory meshes for complicated physical 

domains. For that reason, a special version of the code is 

developed for the case when functions x=x(a,b), y=y(a,b) 

perform mapping of the unit square with excisions 

{0≤a≤a 0 , 0≤b≤b 0 }, {a 1 ≤ a ≤1, 0≤b≤b 1 } to a curvilinear 

quadrangle with curvilinear quadrangular excisions (see 

fig. 5). This version allows carrying out calculations, 

described below, without dividing complicated domains 

into subdomains. Both recent method and the method [18] 

are third order (viscous terms are approximated with the 

second order).  
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Fig. 5. The cavity computational domain, the 75³30 mesh. 

  

Fig. 5 represents schematically the cavity geometry and 

the mesh (the mesh compression Dx
max

/Dx
min

 º 

Dy
max

/Dy
min º15 is used). The flow geometry is 

defined by parameters d=5.5mm (the cavity depth, see fig. 

5), L=16.5mm (the cavity length), the numerical region 

above cavity has the height of 22mm and the length of 

60mm. This cavity flow is tested numerically with flow 

field conditions M ¤=1.5 or M ¤=2.5, qm = 0.417mm 

(the momentum thickness of the boundary layer on the 

inflow edge). Boundary conditions for computations are 

no-slip adiabatic wall on solid surfaces, extrapolations on 

the outflow boundaries, prescribed variables on the inflow 

edge. Namely, dimensionless pressure and density are 1, 

the vertical velocity v is 0, the horizontal velocity is u= 

M¤ g(2 s -s) if s=y/q≤1, u= M¤ g
 
if s=y/q >1, 

g=1.4 – the specific heat ratio, q - initial boundary 

thickness. Boundary thickness q  is chosen as 

q=qm 30/13=0.962mm to provide the mentioned above 

momentum thickness value qm = 0.417mm. 

Naturally, numerical calculations deal with 

dimensionless variables. These variables are defined as 

result of normalizations of initial variables by ambient 

parameters or the cavity depth d: p¤ - for pressure, Ȑ¤ - 

for a density, ¤¤ rp  - for a velocity, d – for space 

variables, d/ ¤¤ rp  - for time. Calculations are carried 

out for normalized physical viscosity µ norm = 

µ ¤ /[dȐ¤ ¤¤ rp ] =2.2e-6. Mentioned above grid 

compression does not provide resolution of the laminar 

sublayer for this value of physical viscosity. The turbulent 

viscosity influence on the flow fields is dominant in this 

case.  

 

V. RESULTS AND DISCUSSION 
 

Fig. 6 shows the density distribution for the M¤ =1.5 

cavity flow. Karman model parameters c=0. 9d, λ=.06d are 

used. The 751 ³531 mesh is applied (quadrangular 

excisions contain 151³101 and 301³101 points, see fig. 

5).  

 
Fig. 6. The density distribution in the M¤ =1.5 cavity 

flow 

 Fig. 7 show cavity bottom pressure histories at x 1 =0.33 

and x 2 =2.33 points. 

 
Fig. 7. Bottom pressure histories at x 1 =0.33 and 

x 2 =2.33 points. 

  

It may be seen that these histories are nearly periodical 

with the T=3.57 period. To show the flow dynamics 

through this time period density distributions at time 

moments t=t 0 +nT/4, n=1…4, t 0 =95.0, T=3.57, are 

represented in figs. 8(a)-8(d).  

(a) (b)  

(c) (d)  

Fig. 8. Density distributions, (a) – t=t 0 +T/4,(b) – 

-t=t 0 +T/2, (c) - t=t 0 +3T/4, (d) – t=t 0 +T. 

 

It is easy to see that fig. 6, which shows the density 

distribution at the time moment t= t 0 =90.0, and fig. 8(d) 

are like, so these figs. show nearly periodical dynamics of 

the considered unsteady flow.  
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Mass and momentum exchange between the free stream 

and the enclosed flow occurs across the open cavity top 

boundary. Unsteady mass ejection and entrainment at the 

downstream cavity edge may be seen in figs. 6, 8(a)-8(d). 

Vortexes positions are signed by arrows in these figs. 

During the mass ejection phase, a vortex leaves the cavity 

and is convected downstream, parallel to the free stream.  

 Time histories of the flow pressure at x 1 =0.33 and 

x 2 =2.33 points are used to form the time averaged sound 

pressure level SPL , which is computed by the equation  

SPL =20 Log 10  (Δp /p ref ), p ref =20mkPa/p¤,  

where 

 Δp=
2'p , 

2'p =S
n

(p n - p )
2

/N,  

p¤=101325Pa (air pressure under normal conditions) is 

used since dimensionless variables are dealt here. The time 

averaged SPL  of 177.1Db is resulted for the x 1 =0.33 

point and SPL  of 181.7Db is resulted for the x 2 =2.33 

point. These values may be compared with the SPL  of 

171Db at the x 1  point and the SPL  of 176Db at the 

x 2 point, which may be defined approximately from graphs, 

presented in [15].  

Fig. 9 shows the density distribution, calculated for the 

flow condition M ¤=2.5. Mass exchange between the free 

stream and the enclosed flow is not observed in this flow. 

  

Fig. 9. The density distribution, M jet =2.5. 

  

Fig. 10 shows cavity flow pressure histories at x 1 =0.33 

and x 2 =2.33 points. 

 
Fig. 10. Bottom pressure histories at x 1 =0.33 and x 2 =2.33 

points. 

  

The time averaged SPL  of 159.9Db is resulted for the 

x 1 =0.33 point and the SPL  of 165.5Db is resulted for 

the x 2 =2.33 point. These values may be compared with 

the SPL  of 161Db at the x 1  point and the SPL  of 

163Db at the x 2 point, which may be defined from graphs, 

presented in [15].  

It may be seen that these histories are nearly periodical 

with the T=5.89 period. To investigate flow dynamics in 

detail integration of RANS is performed for time interval 

[t=60, t=60+T]. It occurs that flow fields pictures for the 

first half of this time period are like to pictures for the 

second half period (but the first half period pressure 

history differs from the second half period history 

according to fig. 10). Figs. 11(a)-11(d) show streamlines 

pictures at time moments t=t 0 +nT/6, n=3,…,6, t 0 =60, 

T=5.89. Oscillations of the shear layer between the free 

stream and the enclosed flow are seen in these figs. The 

left part of the cavity contains changeable low velocity 

flow.  

 

(a) (b)  

 



 

 
 

Copyright © 2017 IJISM, All right reserved 

94 

International Journal of Innovation in Science and Mathematics 

Volume 5, Issue 3, ISSN (Online): 2347–9051 

 

(c) (d)  

Fig. 11. Streamlines distributions, (a) – t=t 0 +T/2,(b)- – 

t=t 0 +2T/3, (c) - t=t 0 +5T/6, (d) – t=t 0 +T. 

 

VI. CONCLUSIONS 
 

Recent paper is devoted to development of the Karman 

model, suggested in [3]. Namely, resolution of the model is 

increased, the possibility to adapt model to any flow by 

choosing of control parameters becomes higher. This 

simple and universal model may be considered as a tool for 

fast numerous calculations of diverge flows, and, 

consequently, may be used at least in the first stage of a 

search for new self-oscillatory compressible flows. New 

unsteady flows may be investigated then by usage of more 

complicated and perfect turbulence models. Recent studies 

are a part of investigations, devoted to a numerical search 

for new self-oscillatory compressible flows, which is 

started in [5],[6] and is continued in [3].  

 To verify this model CFD studies of low Mach number 

flow near plane surface and supersonic cavity flow [15] are 

carried out here. The logarithmic low peace is observed in 

the velocity profile near a plane wall. Reasonable accord 

with cavity flow data [15] is demonstrated here.  
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