A Study of W_3 - Symmetric K-Contact Riemannian Manifold

S.K. Moindi, F. Njui and G.P. Pokhariyal*
School of mathematics, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
*Corresponding author email id: pokhariyal@uonbi.ac.ke

Abstract – In this paper the geometric properties of W_3 - curvature tensor are studied in K-contact Riemannian manifold.

Keywords – W_3 - Curvature Tensor, K-Contact Riemannian Manifold, Semi Symmetric, Symmetric and W_3 - Flat.

I. 2010 MATHEMATICS SUBJECT CLASSIFICATION: 53C15, 53C40

(1.0) Preliminaries:
Let M_n be an $n (= 2m + 1) -$ dimensional contact Riemannian manifold with the structure tensors (Φ, T, A, g). Then the following formulas holds:

\[
\phi^2 X = -X + A(X)T, \quad A(T) = 1
\]

where $\phi = \frac{1}{2} L_T \phi$ where h is the lie derivative, then any contact Riemannian manifold satisfies the condition that h and ϕ are symmetric operators, h ant-commutes with ϕ (i.e. $\phi h = h \phi = 0$), $A_{\phi} h = 0$ see[2] and [3] (1.4)

$F(X, Y) = g(X, \phi Y) - g(Y, \phi X) = (\nabla_X A)(Y) = -(\nabla_Y A)(X) = 0$ (1.3)

d$A(X, Y) = g(X, \phi Y)$ [see [1]] for any vector fields X and Y in M. If we defined an operator h by $h = \frac{1}{2} L_T \phi$ where h is the lie derivative, then any contact Riemannian manifold satisfies the condition that h and ϕ are symmetric operators, h ant-commutes with ϕ (i.e. $\phi h = h \phi = 0$), $A_{\phi} h = 0$ see[2] and [3] (1.4)

$\nabla_X T = -\phi X$ also in K-contact we have

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

where R is the Riemannian (0,4) curvature tensors

\[S(T, T) = Ric(T, T) = n - 1,\]

(1.10)

then using the definition of W_3 - tensor in K-contact Riemannian Mishra and Pokhariyal [4] gave the definition of W_3 -tensor as

\[W_3(X, Y) Z = R(X, Y) Z + \frac{1}{n-1} [g(Y, Z) Q X - Ric(X, Z) Y]
\]

where Q is the symmetric endomorphism of tangent space at a point to the Ricci tensor or

$W_3(X, Y, Z, U) = R(X, Y, Z, U) + \frac{1}{n-1} [g(Y, Z) Ric(X, U) - g(Y, U) Ric(X, Z)]$

II. W_3-Curvature Tensor in K-Contact Riemannian Manifold

A K-contact Riemannian manifold is said to be W_3-flat if $W_3(X, Y) Z = 0$.

(2.1) Theorem:
A W_3 - flat K-contact Riemannian Manifold is a Space of negative scalar curvature, that is: $r = -n(n + 1)$

Put $W_3 = 0$

\[
\Rightarrow 0 = R(X, Y, Z, U) + \frac{1}{n-1} [g(Y, Z) Ric(X, U) - g(Y, U) Ric(X, Z)]
\]

Then using the definition of $Ric(X, Y) = (n - 1)g(X, Y)$ in the above equation we get

\[R(X, Y, Z, U) = \frac{1}{n-1} [n(n - 1) g(Y, U) g(X, Z) - (n - 1) g(Y, Z) g(X, U)]
\]

\[= [g(Y, U) g(X, Z) - g(Y, Z) g(X, U)] - [g(Y, U) g(X, Z) + g(Y, Z) g(X, U)]
\]

\[= -[g(Y, U) g(X, Z) + g(Y, Z) g(X, U)]
\]

\[= -[g(Y, U) g(X, Z) - g(Y, Z) g(X, U)]
\]

Copyright © 2018 IJISM, All right reserved 102
III. W_3 - Symmetric K-Contact Riemannian Manifold

A K-contact Riemannian manifold is said to be symmetric if
\[(3.1) \quad \nabla_\mathcal{Y} W_3(X, Y, Z) = W_3'(X, Y, Z, U) = 0.\]

Theorem 3:
A W_3-symmetric and W_3-flat K-contact manifold is a flat manifold i.e. zero curvature.

Proof:
From the symmetric property it follow
\[(3.1.1) \quad R(X, Y, W_3(Z, U, V)) - W_3(Z, R(X, Y, U, V)) = 0\]

We expand the above equation
\[(3.1.2) \quad R(X, Y, W_3(Z, U, V)) = g(Y, W_3(Z, U, V))X - g(X, W_3(Z, U, V))Y\]
\[= W_3'(Y, Z, U, V)X - W_3'(X, Z, U, V)Y\]
\[= R(X, Y, W_3(Z, U, V)) = W_3'(I, Z, U, V) = 0\]

Hence the theorem

IV. W_3 - Semi Symmetric K-Contact Riemannian Manifold

A K-contact Riemannian manifold is said to be a W_3-semi symmetric if

\[(3.1.5) \quad W_3'(Z, U, R(X, Y, V), T) = R'(Z, U, R(X, Y, V), T)\]
\[+ \frac{1}{n-1} [g(U, R(X, Y, V))Ric(T, Z) - g(U, T)Ric(R(X, Y, V), Z)]\]
\[= R(Z, U, R(X, Y, V), T) + \frac{n-1}{n-1} [g(Z)R'(X, Y, V) - g(U)R'(X, Y, Z)]\]
\[= 2[A(Z)R'(X, Y, V, U) - A(U)R'(X, Y, V, Z)]\]

After using $g(X, T) = A(X)$ and $Ric(X, Y) = (n-1)g(X, Y)$

\[= 2[A(Z)R'(X, Y, V, U) - A(U)R'(X, Y, V, Z)]\]

Since $A(X)$ and $A(Y)$ are non-zero, $W_3' = 0$ from the definition of W_3 symmetric. Also the coefficients of $A(X)$ cancelled out since R' is skew-symmetric with respect to the last two variables. Same to the coefficients of $A(U)$

And thus leaves us with
\[2[g(U, V)R'(X, Y, Z, T) - g(Z, V)R'(X, Y, U, T)] = 0\]

Since $g(U, V) \neq g(Z, V) \neq 0$. For arbitrary vectors $U, V, Z, ...$

Implying that if W_3 is symmetric i.e.
\[\nabla_X W_3(X, Y, Z) = W_3'(X, Y, Z, U) = 0\]
\[\Rightarrow R'(X, Y, Z, T) = 0\]

Hence the theorem
If

$$R(X,Y)W_3(U,V)Z = 0 \Rightarrow g(R(X,Y)W_3, T) = R'(X,Y, W_3, T) = g(X, T)g(Y, W_3) -$$

$$g(Y, T)g(X, W_3) = A(X)W_3'(Z, U, V, X) - A(Y)W_3'(Z, U, V, X) = 0$$

Since $A(X)$ and $A(Y)$ are non-zero $\Rightarrow W_3' = 0$ i.e.

$$W_3'(Z, U, V, Y) = W_3'(Z, U, V, X) = 0$$

$$\nabla_U W_3(X, Y, Z) = W_3'(X, Y, Z, U) = 0$$

Hence the theorem.

V. Discussion

The W_3'-curvature tensor is symmetrical in Z and U and satisfies Cyclic property with fixed X [5]. The Rainich conditions for existence of non-null electro variance can be obtained by the contracted part of this tensor [6].

Reference