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 Abstract – Third order cnoidal wave solutions in shallow 

water are developed where waves progress steadily without 
any change of form. Shallow water wave problems are solved 
at the bottom and at the free surface. The boundary 
conditions are also taken from Navier-Stokes equation of 
motion. Using these boundary conditions, three nonlinear 
ordinary differential equations are derived which can be 
solved using series expansion method. Taking Jacobi elliptic 
function, third order cnoidal wave solutions have been 
established from which wave elevation, horizontal wave 
velocity and acceleration due to gravity for cnoidal wave are 
expressed. Assuming Taylor expansion for the stream 
function about the bed, the fluid velocity components are 
derived in terms of Jacobi elliptic function. 
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I.  INTRODUCTION  
 

In recent years, the capabilities for calculating shallow 
water wave problems have advanced a great deal. The 
computation of higher order cnoidal wave solutions for 
steady, incompressible flow is an important aspect in 
coastal engineering. Several higher order  approximations 
to irrotational water waves of constant form have appeared 
in recent years, often based on Fourier series, but where 
convergence is slow, if at all, for shallow water. These 
solutions are often numerical and of an inverse 
formulation, and are generally of such higher order, that it 
is difficult to obtain expressions for physical quantities as 
functions of position for practical use. The presentation of 
results has been limited to tables of integral quantities for 
a range of wave lengths and heights. However, these 
methods have achieved real success in obtaining 
numerically exact solutions for the first time Schwartz 
[20] and Cokelet [5]. A survey and comparison of the 
methods is given Cokelet [5]. 

Fenton [6] presented a fifth order cnoidal wave theory 
where boundary condition comes from Bernoulli’s 
equation which was both apparently complicated, 
requiring the presentation of many coefficients as 
unattractive floating point numbers  and also gave poor 
results  for fluid velocities under high waves. However, in 
a later work, Fenton [7] showed that instead of fluid 
velocities being expressed as expansions in wave height, 
the original spirit of cnoidal theory were retained.  Cnoidal 
theory obtained its name in 1895 when Korteweg and_de 
Vries [14] obtained their eponymous equation for the 
propagation of waves over a flat bed. The cnoidal solution 
shows the familiar long flat troughs and narrow crests of 

real wave in shallow water. Higher order solutions of 
cnoidal waves have been derived by Laitone [15], who 
provided a number of results, re-casting the series in terms 
of the wave height/depth. Tsuchiya and Yasuda [21] 
obtained a third order solution with the introduction of 
another definition of wave celerity based on assumptions 
concerning the Bernoulli constant. Nishimura et al. [16] 
devised procedures for generating higher order theories for 
both Stokes and cnoidal theories, making extensive use of 
recurrence relations. Nishimura et al. [17] continued the 
work of Nishimura et al. [16] and presented a unified view 
of Stokes and cnoidal theories. Karabut [12] solved an 
ordinary quadratic nonlinear differential difference 
equation of the first order containing an unknown function 
under certain conditions. Halasz [10] discussed on higher 
order corrections for shallow water solitary waves. Chen et 
al. [4] studied the cnoidal wave solutions of the 
Boussinesq systems in two different techniques using the 
Jacobi elliptic function series. Carter et al [3] discussed the 
kinematics and stability of solitary and cnoidal wave 
solutions of the Serre equations which are a pair of 
strongly nonlinear, weakly, dispersive, Boussinesq type 
partial differential equations. They [3] also described the 
model of the surface elevation and the depth averaged 
horizontal velocity of an inviscid, irrotational, 
incompressible shallow water.  Jain et al. [11] derived 
coupled evolution equations for first and second order 
potentials using reductive perturbation method with 
appropriate boundary conditions. Oh and Watanabe [18] 
obtained the second order solution by taking into account 
the unstable and dissipative effects based on a cnoidal 
wave solution to the KdV equation. Xu et al. [22] 
calculated the cnoidal function in cnoidal wave theory 
based on the precise integration method and also provided 
a trigonometric function approximation for the cnoidal 
function. Parvin et al. [19] derived first and second order 
cnoidal wave solutions using Jacobi elliptic function. 
Khater et al. [13] used a suitable ansatz and Jacobi elliptic 
function expansion method to construct new exact cnoidal 
wave solutions of the modified fifth order KdV equation 
and generalized fifth order KdV equation which  included 
as special cases, some well known equations. Fu et al. [8] 
applied Jacobi elliptic function in Jacobi elliptic function 
expansion method to construct the exact periodic solutions 
of nonlinear wave equations. In this paper, shallow water 
wave problems have been solved using boundary 
conditions, at the bottom 0=Y  and at the free 

surface ( )XY η= . Also the boundary conditions from 

Navier-Stokes equation of motion generate third order 
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cnoidal wave solutions. Then horizontal and vertical fluid 
velocity components have been established in terms of 
Jacobi elliptic function. 
 

II.  MATHEMATICAL FORMULATION  
 

Consider the wave as shown in figure-1, with a 
stationary frame of reference ),( yx , x in the direction of 

propagation of the waves and y vertically upwards with 

the origin on the flat bed. The waves travel in the x  
direction at speed c relative to this frame. Consider also a 
frame of reference ),( YX moving with the waves at 

velocityc , such that ctXx += , where t is time 
and Yy = . The fluid velocity in the ),( yx frame is 

),( vu  and that in the ),( YX  frame is ),( VU . The 

velocities are related by cUu +=  and Vv = . 
In the ),( YX  frame, all fluid motion is steady and 

consists of a flow in the negative X direction, roughly of 
the magnitude of the wave speed, underneath the 
stationary wave profile. The mean horizontal fluid velocity 
in this frame, for a constant value of Y over one 

wavelength λ   is denoted by -U . It is negative because 
the apparent flow is in the -X direction. For the 
convenience of our calculation, the velocities in this frame 
are used to obtain the solutions. 

 
Fig. 1. Wave train, showing important dimensions and 

coordinates. 
 

For irrotational flow, stream function satisfies   Laplaces 
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The boundary conditions at the bottom 0=Y  is a 
stream line on which ( )YX ,ψ is constant and at the free 
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where Q is the volume flux underneath the wave train per 

unit span. The negative sign is for the flow which is in the 
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We assume a Taylor expansion for ψ  about the bed of 

the following form 
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as in Fenton [7], where 
dX

df
 is the horizontal velocity on 

the bed.  
Now, the velocity components anywhere in the fluid are  
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From Eqs. (3) and (4), we get
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At the free surface )(XY η= , Eqs. (2), (8) and (9) 

become 
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Differentiating Eq. (10) and then substituting this value 
in Eqs. (11) and (12), we have 
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Eqs. (10), (13) and (14) are three nonlinear ordinary 

differential equations in the unknowns  
),(Xη  gandXf )(′ . These ordinary differential 

equations can be solved using power series method.

  
III.  POWER SERIES SOLUTION  

 
Assuming constant depth ( ) ( ) ,X h and f X Uη ′= = the 

derived equations can be solved using series expansion 
method about the state of a uniform critical flow. Let the 
scaled horizontal variable be 
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Using 2α  as the expansion parameter, the series 
expansions are in the following
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where N is the order of solution required.  

IV. T HIRD ORDER CNOIDAL WAVE SOLUTION  
 

To derive third order cnoidal wave solutions, we need 
some values from Parvin et al. [19]    
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Using the series expansions (18), (19) and (20) and 

taking ( )8αo , Eqs. (15), (16) and (17) can be written as 
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Equating the coefficients of 8α from Eqs. (24), (25) 
and (26), we have
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From Eqs. (27), (28) and (29), we have 
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              (30) 
According to the Parvin et al. [19], the solutions for 

21 FandF in terms of ( )mcn θ2  are 

( )mmcnF θ2
1 5−=                               (31) 

and 
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        (32)
   

Now, assuming 3F  in terms of Jacobi elliptic function as 

Fenton [6], we have 
 ( ) ( ) ( )mcnbmcnbmcnbF θθθ 6

3
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            (33) 
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(34) 
Substituting these values in Eq. (30), we have 
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Now equating the coefficients of like power of ( )mcn θ2  

from Eq. (35), we obtain the values of 321, bandbb , i. e., 
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Substituting the values 32,1 bandbb in Eq. (33), we get 
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From Eq. (23), the value of 3Y  is
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Substituting these value in Eqs. (18) and (19), we obtain 
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                                                                               (42)  

Also, from Parvin et al. [19], Eq. (22) can be written 
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     (43) 
Eqs. (41), (42) and (43) are the third order cnoidal wave 

solutions i.e. which  express wave elevation, horizontal 
wave velocity and acceleration due to gravity for cnoidal 
wave.

 

 
V. RESULTS AND DISCUSSION 

 
In Eqs. (41), (42) and (43) we have obtained the third 

order cnoidal wave solutions. These solutions are obtained 
for elliptic parameter which is less than one (assuming five 
numbers say 0.1, 0.2, 0.3, 0.4 and 0.5) and Jacobi elliptic 
function which tends to one. In Eqs. (41), (42) and (43) 
taking expansion parameter as positive and negative and 
so on, it is noted that y1, y2, y3, y4 and y5 are solution 
curves of Eqs. (41), (42) and (43) shown in Fig. 2-7. In 
Fig. 2-7, we observe that the variations of elliptic 
parameter (m=0.1, 0.2, 0.3, 0.4 and 0.5) cause significant 
changes in the third order cnoidal wave solutions.  In Figs. 
2 and 3, it is mentioned that the first two curves   of third 
order cnoidal wave increase with the increases of elliptic 
parameter and the last three curves of third order cnoidal 
wave decrease with the increases of elliptic parameter. In 
Figs. 4 and 5, the first two curves of third order cnoidal 
wave decrease with the increases of elliptic parameter and 
the last three curves of third order cnoidal wave increase 
with the increases of elliptic parameter. In Figs. 6 and 7, 
the first curve of third order cnoidal wave decreases with 
the increases of elliptic parameter and the last four curves 
firstly decrease and finally increase rapidly with the 
increases of elliptic parameter.  
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Fig. 2:   Third order cnoidal wave solution due to Jacobi 

elliptic function ( ) 12 =mcn θ  

-1.5 -1 -0.5 0
-15

-10

-5

0

5

10

15

Expansion parameter

T
hi

rd
 o

rd
er

 c
no

id
al

 w
av

e 
so

lu
tio

n

y1 
y2 

y3 
y4 

y5 

m=0.1 
m=0.2 

m=0.3 

m=0.4 
m=0.5 

 
Fig. 3:  Third order cnoidal wave solution due to Jacobi 

elliptic function ( ) 12 =mcn θ . 
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Fig. 4:  Third order cnoidal wave solution due to Jacobi 

elliptic function ( ) 12 =mcn θ . 
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Fig. 5:  Third order cnoidal wave solution due to Jacobi 

elliptic function ( ) 12 =mcn θ . 
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Fig. 6:  Third order cnoidal wave solution due to Jacobi 

elliptic function ( ) 12 =mcn θ . 
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Fig. 7:  Third order cnoidal wave solution due to Jacobi 

elliptic function ( ) 12 =mcn θ . 
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VI.  VELOCITY COMPONENTS 
 

To derive velocity components in fluid, Taylor 
expansion for the stream function is assumed. Then from 
Eq. (6), we obtain for dimensionless form, 
consider *** ,, fQfhYYhXX ′=′== , 
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Hence from Eq. (43) and neglecting higher order term, we 

get
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Since 
α
θh

hXX == *
, then  Eq. (42), by  differentiating 

in four times and substituting these necessary values in 
Eq.(44) , we have 
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To obtain the vertical component of fluid velocity, we 

can use the equation that the fluid motion is 
incompressible,  
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 (46) 

 
VII.  CONCLUSION  

 
Cnoidal wave theory is useful for studying wave motion 

in shallow water. Here, third order cnoidal wave solutions 
are formulated using boundary conditions at the bottom 
and at the free surface. Also the boundary conditions are 
used from Navier-Stokes equation of motion. Then taking 
Jacobi elliptic function, third order cnoidal wave solutions 
have been derived. Finally, the horizontal and vertical 
fluid velocity components are established using Taylor 
expansion for the stream function about the bed.   
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Bangladesh  

Year :1997 Post Graduation:  
Master of Science (M. Sc.) in Applied Mathematics 
Institution : University of Rajshahi, Rajshahi-6205, 
Bangladesh  

Year : 1996 Graduation :  
B. Sc. Honors in Mathematics  
Institution : University of Rajshahi, Rajshahi-6205, 
Bangladesh  

FIELD OF SPECIALIZATION  

• Teaching at Graduate Level: Calculus, Mathematical Methods, 
Classical Mechanics 

• Teaching at Post Graduate Level: Magneto-hydrodynamics and 
Turbulence, Water Waves.  

• Current Main Research Field: Water Waves. 
Awards/Scholarships 
1. Fellowships for M. Phil degree from Rajshahi University.. 
2. Gold Medal for the Faculty first awarded by Rajshahi University. 
3. Gold Medal for the 1st class 1st position in B.Sc (Hons.) Degree 

awarded by Rajshahi University 
4. Awarded scholarship for the 1st class 1st position in B.Sc (Hons.) 

Degree. 
5. Awarded the ‘Rajshahi University Prize’ along with a Certificate for 

M.Sc. Degree. 
6. Awarded the ‘Rajshahi University Prize’ along with a Certificate for 

B. Sc. Degree. 
7. Awarded “Engineer Akbar Hossain Scholarship” for B.Sc. (Hons.) 

Degree. 
THESIS SUPERVISION 

• 6 M. Sc. Thesis students 
PUBLICATIONS  

• Published 12(Twelve) research papers in National and International 
Journals 

Languages 

• Writing and speaking (fluently): English and Bengali. 

• Arabic: Proficiency-Good 
PERSONAL DETAILS 
Name:  Dr. Mst. Shamima Sultana  
Date of Birth :  11th June, 1976  
Present Address:  Associate Professor 

Department of Applied Mathematics, 
Univrsity of Rajshahi, Rajshahi-6205, 
Bangladesh.  

Permanent Address:  House Name: Matrogriho, House No. 593/A 
,Dharampur, Binodpur-6206; Rajshahi; 
Bangladesh 

Nationality:  Bangladeshi  
Medium of Education:  English  
 

 

Dr. M. Shamsul Alam Sarker 
DR. M. SHAMSUL ALAM SARKERM.Sc. (Raj), PhD, (Banaras) 
Professor  
DEPARTMENT OF APPLIED MATHEMATICS 
University of Rajshahi, Rajshahi-6205, 
Tel: 0721-711155(Off.), 0721-750745 (Res.) 
Mobile: 01715844017, Fax: 0088-0721-750064 

Email: sasmathbd@yahoo.com 
ACADEMIC QUALIFICATION  
Year :1992 Doctor of Philosophy (Ph. D.)  

Institution : Department of Mathematics, 
Banaras Hindu University, India.  
Thesis Title : Some Theoretical Investigations in 
Magneto-hydrodynamic Turbulence.  

Year :1981 Post Graduation:  
Master of Science (M. Sc.) in Applied Mathematics 
Institution : University of Rajshahi 
Result : First Class First  

Year : 1979 Graduation :  
Bachelor of Science (B. Sc.)  
Institution : Gaibandha Govt. College, Gaibandha 
University : Rajshahi 
Result : First Division (5th Place)  

ACADEMIC QUALIFICATION  FIELD OF SPECIALIZATION  

• Fluid dynamics (Turbulence, MHD Turbulence and Laminar Flow )  

• Teaching at Graduate Level: Business Mathematics and 
Hydrodynamics. 
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• Teaching at Post Graduate Level: Fluid dynamics.  

• Also conducting research on Turbulence, MHD Turbulence and 
Laminar Flow . 

ACADEMIC EXPERIENCES  
1. Professor, Dept. of Applied Mathematics, Rajshahi University, 

Rajshahi, from July 19, 2004 to date. 
2. Professor, Dept. of Mathematics, Rajshahi University, from June 

11,1999 to July 18, 2004 
3. Associate Professor, Dept. of Mathematics, Rajshahi University, 

from Nov.6,1993 to June 10,1999. 
4. Assistant Professor, Dept. of Mathematics, Rajshahi University, 

from July 16, 1989 to Nov. 1993. 
5. Lecturer,  Dept. of Mathematics, Rajshahi University, from July 16, 

1986 to July 15, 1989. 
6. Lecturer in Mathematics, Sundargonj D.W. College, Sundargonj, 

Gaibandha, from 25 Sept., 1983 to July, 11, 1984. 
7. Adjunct Faculty Member : 
(i) Northern University, Bangladesh (Rajshahi Campus).

From February 2005 to Dec. 2010. 
(ii) Ahsanullah University of Science and Technology,Bangladesh 

(Rajshahi Campus).
From April, 2006 to September, 2007 and April 2008 to September, 
2008. 

(iii) Part time course teacher: Institute of Business Administration ( IBA), 
Rajshahi University.
From July,2002 to December 2004 and July, 2007 to Nov.2008  

ADMINISTRATIVE EXPERIENCES  
1. Senior Officer, Janata Bank, Lalmonirhat Br. from July 12, 1984 to 

July12, 1986. 
2. House Tutor, Shaheed Suhrawardi Hall, Rajshahi University, from 

March 15, 1992 to Dec. 04, 1994. 
3. Provost, Sher-E-Bangla Fazlul Haque Hall, Rajshahi University, 

from Oct. 17, 1996 to Oct. 16, 1999. 
4. Convener, Provost Council, Rajshahi University, from January 

1999 to Oct. 1999. 
5. Proctor, Rajshahi University, from March 09, 2003 to March 08, 

2006. 
6. Chairman, Department of Applied Mathematics, Rajshahi 

University, Bangladesh. From October 1, 2008 to Sept.30, 2011. 
7. Senate Member, Rajshahi University Senate, from Feb. 26, 2005 to 

date. 
8. Member, Academic Council, Rajshahi Univ., Rajshahi, from June 

11, 1999 to date 
9. Member, Faculty of science, Rajshahi University, Rajshahi, from 

June 11, 1999 to date 
10. Member, Planning and Academic Committee, Dept. of Applied 

Math. Rajshahi Univ .from July 19, 2004 to date. 
11. Member, Appeal and Arbitration Council, Board of Intermediate 

and Secondary Education, Rajshahi, from Dec. 11, 2004 to Dec., 10, 
2007. 

OTHER EXPERIENCES 
1. Member, Editional Board, Ganit, Journal of Bangladesh 

Mathematics Society, January, 2008 to December, 2009.  
2. Member, Editorial Board, Journal of Science, Rajshahi university 

studies, from April 8, 2006 to date. 
3. Expert Member, Selection Board for Lecturer/ Assistant Professor, 

in Mathematics, Shahjalal University of Science & Technology, 
Sylhet,(01/10/2005 to 29/03/2009) Haji Danesh Univ. of Science & 
Technology, Dinajpur,(01/03/2004 to 21/11/2010) Rajshahi Univ. of 
Science & technology( RUET), Rajshahi,( 01/07/2005 to 
30/06/2009), Jahangirnagar University ( 06/07/2002 to 05/07/2004) 
and Bangladesh Open University, Dhaka( 2006). 

4. Expert Member, Selection Board for Professor/ Associate Professor 
in Mathematics, Dhaka University, Dhaka,(18/03/2003 to 
6/02/2011) Shahjalal Univ. of Science & Tech.(SUST), 
Sylhet,(26/12/2006 to 29/03/2009) and Khulna Univ. of Science & 
Tech.(KUET) Khulna (07/03/ 2006 to 11/03/ 2008 and 11/03/ 2010 
to 10/03/2012) 

5. Member, Selection Committee in Applied Mathematics, Accounting 
& Information System and Population Science & Human Resource 
Dev. Departments, Rajshahi University ( 01/11/2006 to 30/10/2007) 

6. External Examiner of M. Phil. and Ph. D. in Mathematics, 
Bangladesh Univ. of Science & Tech.(BUET) Dhaka, Khulna Univ. 
of Science & Tech.(KUET) Khulna and RCMPS, Chittagong Univ. 
Chittagong. 

7. Reviewer, Ganit, Journal of Bangladesh Math. Soc., Dhaka Univ., 
Khulna Univ. Journal, Khulna and Islamic univ. Journal, Khustia 
etc. 

8. Reviewer, Journal of Scientific Research, Faculty of Science, 
Rajsahhi University, Bangladesh 

9. Member, Faculty of Applied Sciences and Technology, Islamic 
University, Kustia, from Sept. 9, 2004 to Sept. 8, 2006. 

10. Member, Project Evaluation Committee, University Grants 
Commission, from July 2006 to June 2007 and July 2008-June 2009. 

11. Member, Governing Body, Dental College, Rangpur (Nominatated 
by Rajshahi University), from 27/08/ 2002 to 29/07/.2010. 

12. Expert Member, Selection Board for Assistant Professor, 
Associated Professor & Professor in Applied Mathematics, 
South Asian University, New Delhi, India, July 02-03, 2012 

CONFERENCE/ SEMINAR ATTENDED  
1. Summer Science Institute in Mathematics, Dept. of Mathematics, 

Dhaka Univ. (1987). (Secured Second Position in Performance). 
2. Summer Science Institute in Mathematics, Dept. of Mathematics, 

Rajshahi Univ. (1988). (Secured First Position in Performance) 
3. Bangladesh Association for Science (BAAS) International 

Conference, Jahangirnagar University, Dhaka (1987) 
4. BHU Mathematical Conference, Dept. of Mathematics, Banaras 

Hindu Univ. India (1989) 
5. Bangladesh Association for Science (BAAS) International 

Conference, Bangobandhu Sheikh Mujib Agriculture University, 
Gazipur, 1992 

6. Bangladesh International Mathematical Conference, Dept. of 
Mathematics, Rajshahi Univ. (1993) 

7. Bangladesh International Mathematical Conference, Dept. of 
Mathematics, Dhaka University Univ., Dhaka (1995) 

8. Bangladesh Association for Advancement of Sciences (BAAS) 
International Conference, Jahangirnagar University, Dhaka (1996)  

9. Bangladesh International Mathematical Conference, RCMPS, 
Chittagong, Univ. (1999) 

10. 25th International Nathiagali Summer College on Physics and 
Contemporary Needs, Islamabad, Pakistan (2000) 

11. International Conference on Geometry, Analysis and Applicatoions, 
Banaras Hindu Univ. India (2000). 

12. Bangladesh International Mathematical Conference, Dept. of 
Mathematics, Dhaka University Univ., Dhaka (2007). 

13. Bangladesh International Mathematical Conference, Dept. of 
Mathematics, Bangladesh University of Engineering and 
Technology (BUET) Dhaka (2009)  

MEMBERSHIP  
1. Vice-President, Bangladesh Mathematical society, from Jan-2008-

Dec-2009.  
2. Life-Member, Bangladesh Mathematical Society. 
3. Member, Bangladesh Association for Advancement of 

Science(BAAS). 
THESIS SUPERVISION 

• Supervised 7(Seven) Ph. D. 

• 3(Three) M. Phil. and 10(Ten) M. Sc. Students.  

• At present supervising 1(one) Ph. D. and 1(M. Sc.) M. Sc. student. 
PUBLICATIONS  

• Published 65(Sixty five) research papers in National and 
International Journals 

PERSONAL DETAILS  
Father’s Name:  Ahmed Ali Sarker  
Mother’s Name :  Sarvan Nesa  
Date of Birth :  01- 01- 1957  
Present Address:  Professor 

Department of Applied Mathematics, 
Univrsity of Rajshahi, Rajshahi-6205, Bangladesh.  

Permanent 
Address:  

Vill: Kanchibari, P.O.: Dhubni Bazar 
P.S. : Sundargonj, Dist.: Gaibandha, Bangladesh.  

Religion :  Islam  
Nationality:  Bangladeshi  
ID No.:  8194030127428  
Passport No.:  AC 9205839  
Place of Birth :  Gaibandha,Bangladesh.  
Marital Status :  Married.  
Medium of 
Education:  

English  
 

 


