Parameter Estimation of Dagum Distribution Using Asymmetric Loss Functions

Arun Kumar Rao and Himanshu Pandey
Department of Mathematics & Statistics, DDU Gorakhpur University, Gorakhpur, India.
*Corresponding author email id: himanshu_pandey62@yahoo.com
Date of publication (dd/mm/yyyy): 09/09/2020

Abstract – In this paper, the Dagum distribution is considered for Bayesian analysis. The expressions for Bayes estimators of the parameter have been derived under squared error, precautionary, entropy, K-loss, and Al-Bayyati’s loss functions by using quasi and gamma priors.

Keywords – Dagum Distribution, Bayesian Method, Quasi and Gamma Priors, Squared Error, Precautionary, Entropy, K-Loss, and Al-Bayyati’s Loss Functions.

I. INTRODUCTION

The Dagum distribution was proposed by Camilo Dagum [1]. This distribution is very useful to represent the distribution of income, actuarial data as well for survival analysis. Naqash et al. [2] consider the problem of Bayesian analysis of Dagum distribution for the complete case. An interesting aspect of Dagum distribution is that it admits a mixture representation in terms of generalized gamma and inverse Weibull distributions. The probability density function of Dagum distribution is given by

\[f(x; \theta) = \frac{a \theta x^{-(a+1)}}{[1 + cx^{-a}]^{-(a+1)}} ; x \geq 0, \theta > 0. \]

The joint density function or likelihood function of (1) is given by

\[f(x; \theta) = (ac)^n \theta^n \left(\prod_{i=1}^{n} x_i^{-(a+1)} \right) e^{-(a+1) \sum_{i=1}^{n} \log (1 + cx_i^{-a})}. \]

The log likelihood function is given by

\[\log f(x; \theta) = n \log ac + n \log \theta + \log \left(\prod_{i=1}^{n} x_i^{-(a+1)} \right) - (a+1) \sum_{i=1}^{n} \log (1 + cx_i^{-a}) \]

Differentiating (3) with respect to \(\theta \) and equating to zero, we get the maximum likelihood estimator of \(\theta \) which is given as

\[\hat{\theta} = \frac{\sum_{i=1}^{n} \log (1 + cx_i^{-a})}{n} \]

II. BAYESIAN METHOD OF ESTIMATION

The Bayesian inference procedures have been developed generally under squared error loss function

\[L(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2. \]

The Bayes estimator under the above loss function, say, \(\hat{\theta}_s \), is the posterior mean, i.e.,
\[\hat{\theta}_S = E(\theta). \]

(6)

Zellner [3], Basu and Ebrahimi [4] have recognized that the inappropriateness of using symmetric loss function. Norstrom [5] introduced precautionary loss function is given as

\[L(\hat{\theta}, \theta) = \frac{(\hat{\theta} - \theta)^2}{\theta}. \]

(7)

The Bayes estimator under precautionary loss function is denoted by \(\hat{\theta}_P \) and is obtained by solving the following equation

\[\hat{\theta}_P = \left[E(\hat{\theta}^2) \right]^{1/2}. \]

(8)

In many practical situations, it appears to be more realistic to express the loss in terms of the ratio \(\frac{\hat{\theta}}{\theta} \). In this case, Calabria and Pulcini [6] points out that a useful asymmetric loss function is the entropy loss

\[L(\delta) \propto \left[\delta^p - \log_e (\delta) - 1 \right] \]

where \(\delta = \frac{\theta}{\hat{\theta}} \) and whose minimum occurs at \(\hat{\theta} = \theta \). Also, the loss function \(L(\delta) \) has been used in Dey et al. [7] and Dey and Liu [8], in the original form having \(p = 1 \). Thus \(L(\delta) \) can written be as

\[L(\delta) = b\left[\delta - \log_e (\delta) - 1 \right]; \ b > 0. \]

(9)

The Bayes estimator under entropy loss function is denoted by \(\hat{\theta}_E \) and is obtained by solving the following equation

\[\hat{\theta}_E = \left[E\left(\frac{1}{\delta} \right) \right]^{1/2}. \]

(10)

Wasan [9] proposed the K-loss function which is given as

\[L(\hat{\theta}, \theta) = \frac{(\hat{\theta} - \theta)^2}{\theta}. \]

(11)

Under K-loss function the Bayes estimator of \(\theta \) is denoted by \(\hat{\theta}_K \) and is obtained as

\[\hat{\theta}_K = \left[\frac{E(\theta)}{E(1/\theta)} \right]^{1/2}. \]

(12)

Al-Bayyati [10] introduced a new loss function using Weibull distribution which is given as

\[L(\hat{\theta}, \theta) = \theta^r \left(\hat{\theta} - \theta \right)^2. \]

(13)

Under Al-Bayyati’s loss function the Bayes estimator of \(\theta \) is denoted by \(\hat{\theta}_w \) and is obtained as
\[\hat{\theta}_{\text{ML}} = \frac{E(\theta + 1)}{E(\theta)}. \] (14)

Let us consider two prior distributions of \(\theta \) to obtain the Bayes estimators.

(i) Quasi-prior: For the situation where we have no prior information about the parameter \(\theta \), we may use the quasi density as given by

\[g_1(\theta) = \frac{1}{\theta^d}; \quad \theta > 0, \; d \geq 0. \] (15)

where \(d = 0 \) leads to a diffuse prior and \(d = 1 \), a non-informative prior.

(ii) Gamma prior: Generally, the gamma density is used as prior distribution of the parameter \(\theta \) given by

\[g_2(\theta) = \frac{\beta^\alpha}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta}; \quad \theta > 0. \] (16)

III. Posterior Density Under \(g_1(\theta) \)

The posterior density of \(\theta \) under \(g_1(\theta) \), on using (2), is given by

\[f(\theta|x) = \frac{(ac)^n \theta^n \left(\prod_{i=1}^{n} x_i^{-(a+1)} \right) e^{-\left(\theta+1\right) \sum_{i=1}^{n} \log(1+c x_i^{-a})} \theta^{-d}}{\int_0^{\infty} (ac)^n \theta^n \left(\prod_{i=1}^{n} x_i^{-(a+1)} \right) e^{-\left(\theta+1\right) \sum_{i=1}^{n} \log(1+c x_i^{-a})} \theta^{-d} d\theta} \cdot \frac{\theta^{-d} e^{-\theta \sum_{i=1}^{n} \log(1+c x_i^{-a})}}{\Gamma(n-d+1)} \theta^{n-d+1} \exp \left(- \theta \sum_{i=1}^{n} \log(1+c x_i^{-a}) \right) \right) \right] } \right] \}

\[= \frac{\left(\sum_{i=1}^{n} \log(1+c x_i^{-a}) \right)^{n-d+1}}{\Gamma(n-d+1)} \int_0^{\infty} \theta^{-(n-d+c+1)} e^{-\theta \sum_{i=1}^{n} \log(1+c x_i^{-a})} d\theta = \frac{\left(\sum_{i=1}^{n} \log(1+c x_i^{-a}) \right)^{n-d+1}}{\Gamma(n-d+1)} \frac{\Gamma(n-d+c+1)}{\Gamma(n-d+1)} \left(\sum_{i=1}^{n} \log(1+c x_i^{-a}) \right)^{n-d+c+1} \right] \}

\[= \frac{\Gamma(n-d+c+1)}{\Gamma(n-d+1)} \left(\sum_{i=1}^{n} \log(1+c x_i^{-a}) \right)^{n-d+c+1}. \]

Proof.

By definition, \(E(\theta) = \int \theta f(\theta|x) d\theta \)

\[= \left(\sum_{i=1}^{n} \log(1+c x_i^{-a}) \right)^{n-d+1} \frac{\Gamma(n-d+c+1)}{\Gamma(n-d+1)} \left(\sum_{i=1}^{n} \log(1+c x_i^{-a}) \right)^{n-d+c+1} \]

\[= \frac{\Gamma(n-d+c+1)}{\Gamma(n-d+1)} \left(\sum_{i=1}^{n} \log(1+c x_i^{-a}) \right)^c. \]
From equation (18), for $c = 1$, we have
\[
E(\theta) = (n-d+1) \left[\sum_{i=1}^{n} \log \left(1 + cx_i^{-a} \right) \right]^{-1} \sqrt{b^2 - 4ac}.
\] (19)

From equation (18), for $c = 2$, we have
\[
E(\theta^2) = \left[(n-d+2)(n-d+1) \right] \left[\sum_{i=1}^{n} \log \left(1 + cx_i^{-a} \right) \right]^{-2}.
\] (20)

From equation (18), for $c = -1$, we have
\[
E\left(\frac{1}{\theta} \right) = \frac{1}{(n-d)} \sum_{i=1}^{n} \log \left(1 + cx_i^{-a} \right).
\] (21)

From equation (18), for $c = c + 1$, we have
\[
E(\theta^{c+1}) = \frac{\Gamma(n-d+c+2)}{\Gamma(n-d+1)} \left(\sum_{i=1}^{n} \log \left(1 + cx_i^{-a} \right) \right)^{-(c+1)}.
\] (22)

IV. BAYES ESTIMATORS UNDER $g_1(\theta)$

From equation (6), on using (19), the Bayes estimator of θ under squared error loss function is given by
\[
\hat{\theta}_S = (n-d+1) \left[\sum_{i=1}^{n} \log \left(1 + cx_i^{-a} \right) \right]^{-1}.
\] (23)

From equation (8), on using (20), the Bayes estimator of θ under precautionary loss function is given by
\[
\hat{\theta}_P = \left[(n-d+2)(n-d+1) \right] \left[\sum_{i=1}^{n} \log \left(1 + cx_i^{-a} \right) \right]^{-1}.
\] (24)

From equation (10), on using (21), the Bayes estimator of θ under entropy loss function is given by
\[
\hat{\theta}_E = (n-d) \left(\sum_{i=1}^{n} \log \left(1 + cx_i^{-a} \right) \right)^{-1}.
\] (25)

From equation (12), on using (19) and (21), the Bayes estimator of θ under K-loss function is given by
\[
\hat{\theta}_K = \left[(n-d+1)(n-d) \right] \left[\sum_{i=1}^{n} \log \left(1 + cx_i^{-a} \right) \right]^{-1}.
\] (26)

From equation (14), on using (18) and (22), the Bayes estimator of θ under Al-Bayyati’s loss function is given by
\[
\hat{\theta}_A = (n-d+c+1) \left(\sum_{i=1}^{n} \log \left(1 + cx_i^{-a} \right) \right)^{-1}.
\] (27)

V. POSTERIOR DENSITY UNDER $g_2(\theta)$

Under $g_2(\theta)$, the posterior density of θ, using equation (2), is obtained as
\[
f(\theta|x) = \frac{(ac)^\theta \prod_{i=1}^{n} x_i^{(\theta+1)}}{\Gamma(\alpha)} e^{-\theta \sum_{i=1}^{n} \log(1 + cx_i^{-1})} \frac{\beta^\theta}{\Gamma(\alpha)} e^{-\beta \sum_{i=1}^{n} \log(1 + cx_i^{-1})} = \frac{\theta^{n+\alpha-1} e^{-\left(\frac{\beta}{\Gamma(\alpha)} \sum_{i=1}^{n} \log(1 + cx_i^{-1})\right)\theta}}{\Gamma(n+\alpha)} \int_0^{\infty} \theta^{n+\alpha-1} e^{-\left(\frac{\beta}{\Gamma(\alpha)} \sum_{i=1}^{n} \log(1 + cx_i^{-1})\right)\theta} d\theta
\]

\[
= \frac{\theta^{n+\alpha-1} e^{-\left(\frac{\beta}{\Gamma(\alpha)} \sum_{i=1}^{n} \log(1 + cx_i^{-1})\right)\theta}}{\Gamma(n+\alpha)} \left(\beta + \sum_{i=1}^{n} \log(1 + cx_i^{-1})\right)^{n+\alpha}
\]

2. Theorem

On using (28), we have

\[
E(\theta) = \frac{\Gamma(n+\alpha+c)}{\Gamma(n+\alpha)} \left(\beta + \sum_{i=1}^{n} \log(1 + cx_i^{-1})\right)^{-c}.
\]

Proof.

By definition, \(E(\theta) = \int \theta f(\theta|x) d\theta = \frac{\left(\beta + \sum_{i=1}^{n} \log(1 + cx_i^{-1})\right)^{n+\alpha}}{\Gamma(n+\alpha)} \int_0^{\infty} \theta^{n+\alpha-1} e^{-\left(\frac{\beta}{\Gamma(\alpha)} \sum_{i=1}^{n} \log(1 + cx_i^{-1})\right)\theta} d\theta
\]

\[
= \frac{\left(\beta + \sum_{i=1}^{n} \log(1 + cx_i^{-1})\right)^{n+\alpha}}{\Gamma(n+\alpha)} \frac{\Gamma(n+\alpha+c)}{\beta + \sum_{i=1}^{n} \log(1 + cx_i^{-1})} \left(\beta + \sum_{i=1}^{n} \log(1 + cx_i^{-1})\right)^{-c}.
\]

From equation (29), for \(c = 1\), we have

\[
E(\theta) = \left(\beta + \sum_{i=1}^{n} \log(1 + cx_i^{-1})\right)^{-1}.
\]

From equation (29), for \(c = 2\), we have

\[
E(\theta^2) = \left[\left(n + \alpha + 1\right)(n + \alpha)\right] \left(\beta + \sum_{i=1}^{n} \log(1 + cx_i^{-1})\right)^{-2}.
\]

From equation (29), for \(c = -1\), we have

\[
E\left(\frac{1}{\theta}\right) = \left(\beta + \sum_{i=1}^{n} \log(1 + cx_i^{-1})\right) \left(\beta + \sum_{i=1}^{n} \log(1 + cx_i^{-1})\right)^{-1}.
\]

From equation (29), for \(c = c + 1\), we have
From equation (6), on using (30), the Bayes estimator of θ under squared error loss function is given by

$$\hat{\theta}_s = (n + \alpha) \left(\beta + \sum_{i=1}^{n} \log \left(1 + cx_i^{-\alpha} \right) \right)^{-1}. \quad (34)$$

From equation (8), on using (31), the Bayes estimator of θ under precautionary loss function is given by

$$\hat{\theta}_p = \left[(n + \alpha + 1)(n + \alpha) \right]^{\frac{1}{2}} \left(\beta + \sum_{i=1}^{n} \log \left(1 + cx_i^{-\alpha} \right) \right)^{-1}. \quad (35)$$

From equation (10), on using (32), the Bayes estimator of θ under entropy loss function is given by

$$\hat{\theta}_e = (n + \alpha + 1) \left(\beta + \sum_{i=1}^{n} \log \left(1 + cx_i^{-\alpha} \right) \right)^{-1}. \quad (36)$$

From equation (12), on using (30) and (32), the Bayes estimator of θ under K-loss function is given by

$$\hat{\theta}_k = \left[(n + \alpha)(n + \alpha - 1) \right]^{\frac{1}{2}} \left(\beta + \sum_{i=1}^{n} \log \left(1 + cx_i^{-\alpha} \right) \right)^{-1}. \quad (37)$$

From equation (14), on using (29) and (33), the Bayes estimator of θ under Al-Bayyati’s loss function is given by

$$\hat{\theta}_a = (n + \alpha + c) \left(\beta + \sum_{i=1}^{n} \log \left(1 + cx_i^{-\alpha} \right) \right)^{-1}. \quad (38)$$

VII. CONCLUSION

In this paper, we have obtained a number of estimators of parameter of Dagum distribution. In equation (4) we have obtained the maximum likelihood estimator of the parameter. In equation (23), (24), (25), (26) and (27) we have obtained the Bayes estimators under different loss functions using quasi prior. In equation (34), (35), (36), (37) and (38) we have obtained the Bayes estimators under different loss functions using gamma prior. In the above equation, it is clear that the Bayes estimators depend upon the parameters of the prior distribution.

REFERENCES

AUTHOR’S PROFILE

First Author
Dr. Arun Kumar Rao completed Ph. D. in Statistics in 2003. Presently he is working as Assistant Professor in Statistics at the M.P.P.G. College, Jungle Dhushan, Gorakhpur. He has more than 16 years of teaching and research experience in the field of statistics. He has published 26 research papers. His research specialization in Bayesian Estimation.

Second Author
Dr. Himanshu Pandey completed Ph.D. in Statistics in 1991. He is currently working as Professor in Department of Mathematics & Statistics, D D U Gorakhpur University, Gorakhpur. He has more than 30 years of research and teaching experience in the field of Statistics and has published 141 research papers in National & International Journals. His main research work focused on Bayesian Estimation Operation Research, Demography.